Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The use of multi-output look-up tables (LUTs) is a widely adopted approach in contemporary commercial field-programmable gate arrays (FPGAs). Larger LUT configurations (e.g., six-input LUTs) can be partitioned into smaller LUTs (e.g., two five-input LUTs, maintaining a total input count of less than six). This capability of generating a second output from a larger LUT is not only crucial for reducing logic cell count and enhancing the utilization efficiency of logic resources—thus conserving area—but also plays a key role in optimizing system-level delays and energy consumption. In this paper, we propose an efficient multi-output LUT mapping technique, incorporating several highly efficient technology mapping algorithms, which focus on optimizing the mapping from an interconnection perspective as alternatives to directly merging smaller LUTs. These algorithms include a side-fanout insertion algorithm, and a runtime multi-output cut generation algorithm. The proposed methods improve mapping efficiency and enhance performance. The benchmarking results demonstrate that the dual-output mapping algorithms achieve LUT area reductions of up to 35% and 6%, compared to the state-of-the-art ABC six-input, single-output LUT mapping technique and previous work focusing on dual-output LUT mapping techniques that optimize cut generation parameters. Moreover, FPGA system-level simulations also show that area, delay, and energy can all be optimized based on this multi-output mapping technique.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available April 23, 2026
-
The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. It has been suggested to open a fast energy transport channel for the solar wind to invade Earth’s magnetosphere under northward interplanetary magnetic field (IMF) conditions. It is, therefore, an important phenomenon to understand the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. In this study, we report the three-dimensional ionospheric plasma properties of a space hurricane event in the Northern Hemisphere observed by multiple instruments. Based on the convection velocity observations from ground-based radars and polar satellites, we confirm that the major modulation to the polar cap convection called a space hurricane rotates clockwise at the altitude of the ionosphere. Ground-based incoherent scatter radar and polar satellite observations reveal four features associated with the space hurricane: 1) strong plasma flow shears and being embedded in a clockwise lobe convection cell; 2) a major addition to the total energy deposition in the ionosphere–thermosphere system by Joule heating; 3) downward ionospheric electron transport; and 4) multiple ion-temperature enhancements in the sunward velocity region, likely from the spiral arms of the space hurricane. These results present, first, the impact of space hurricane on the low-altitude ionosphere and provide additional insights on the magnetospheric impact on structuring in the polar ionosphere.more » « lessFree, publicly-accessible full text available December 20, 2025
-
Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry.more » « less
-
Abstract The space hurricane is a polar cap auroral structure with strong flow shears and intense particle precipitation that can disturb the thermosphere under quiet geomagnetic conditions. Here the statistical characteristics of this interaction are surveyed using data from the Defense Meteorological Satellite Program and Gravity Field and Steady‐State Ocean Circulation Explorer satellites. The results confirm that space hurricanes modify the ion and neutral circulation in the polar cap through enhanced electric fields. Local precipitation, particularly >500 eV electrons, which raises the Pedersen conductance, leads to enhanced Joule heating and the generation of gravity waves. Electric fields play a leading role on the dawn side of the space hurricane. Gravity waves are also mainly located on the dawnside of the space hurricane, with a maximum vertical wind of 37 m/s and a 17% neutral density disturbance. These findings augment our awareness of magnetosphere‐polar ionosphere‐thermosphere coupling under quiet northward IMF conditions.more » « lessFree, publicly-accessible full text available April 28, 2026
An official website of the United States government

Full Text Available